Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.212
Filtrar
1.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38571885

RESUMO

Objectives: This study aimed to assess the cellular localization and expression levels of hypoxia-inducible factor (HIF) -α proteins (specifically HIF-1α, HIF-2α, and HIF-3α) that play a role in the hypoxia pathway and to determine their correlation with clinicopathological parameters and patient survival in renal cell carcinoma (RCC). Materials and methods: Tissue microarray (TMA) with cores from 150 clear cell RCCs and 31 non-ccRCC samples. HIF-1α, HIF-2α, and HIF-3α antibodies were used for immunohistochemistry (IHC) of TMA to evaluate the cellular localization and expression levels of HIF-α proteins, specifically in relation to the hypoxia pathway. Results: The expression levels of the HIF-α proteins were higher in the nucleus than in the cytoplasm. Furthermore, the nuclear expression levels of all HIF-α proteins were significantly higher in clear cell RCC (ccRCC) than in non-ccRCC. Cytoplasmic HIF-3α expression was also higher in ccRCC than in non-ccRCC, whereas cytoplasmic HIF-1α and HIF-2α expression levels were similar between the different RCC types. In ccRCC, nuclear HIF-1α expression levels correlated with both nuclear HIF-2α and HIF-3α levels, whereas cytoplasmic HIF-3α expression levels were associated with HIF-1α only.In non-ccRCC, there was a positive correlation observed between nuclear HIF-1α and HIF-3α expression, but no correlation was found with HIF-2α. In patients with ccRCC, the nuclear expressions of HIF-1α and HIF-3α was significantly associated with cancer-specific survival (CSS) in univariate analysis. This association was no longer evident in multivariate analysis. Notably, there was no correlation observed between nuclear HIF-2α expression and CSS in these patients. In contrast, cytoplasmic expression levels showed no association with CSS. Conclusion: The expression levels of the three primary HIF-α proteins were found to be higher in the nucleus than in the cytoplasm. Furthermore, the results indicated that HIF-3α and HIF-1α expression levels were significant univariate factors associated with CSS in patients with clear cell RCC. These results highlight the critical role that HIF-3α and HIF-1α play in the hypoxia pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imuno-Histoquímica , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
2.
Cell Death Dis ; 15(4): 240, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561354

RESUMO

Abnormal lipid metabolism and lipid accumulation are characteristic hallmarks of renal cell carcinoma (RCC). While there is prior evidence closely linking such lipid accumulation within RCC cells and consequent tumorigenesis, the mechanisms underlying this process remain incompletely understood. In this study, a series of bioinformatics analyses were initially performed by screening RCC databases and gene sets, ultimately leading to the identification of TRIB3 as an oncogene that functions as a central regulator of lipid metabolism. TRIB3 overexpression was observed in both RCC patient tumor tissues and cell lines, and this upregulation was correlated with a worse RCC patient prognosis. When TRIB3 was knocked down, this resulted in a reduction in lipid accumulation and the consequent induction of endoplasmic reticulum (ER) stress-related apoptotic cell death. At the molecular level, interactions between TRIB3 and PLIN2 were found to abrogate TEB4-mediated PLIN2 ubiquitination and consequent degradation, thus maintaining higher PLIN2 expression levels. This simultaneously helps facilitate the accumulation of lipids while preserving ER homeostasis, thus driving accelerated RCC tumor progression. This TRIB3-PLIN2 axis thus represents a promising new target for efforts to treat RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Carcinoma de Células Renais/metabolismo , Gotículas Lipídicas/metabolismo , Estresse do Retículo Endoplasmático/genética , Neoplasias Renais/metabolismo , Lipídeos , Proteínas Repressoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
3.
Cancer Med ; 13(7): e7113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545824

RESUMO

BACKGROUND: In renal cell carcinoma (RCC), no clinically available biomarker has been utilized for checkpoint inhibitor immunotherapy (IO) + tyrosine kinase inhibitor (TKI) combinations. Galectin-1 overexpression is found in tumors, with potential immune-regulating roles. METHODS: RNA-sequencing was performed in two cohorts of RCC treated with IO/TKI combination therapy (ZS-MRCC, JAVELIN-101). Immunohistochemistry and flow cytometry were performed to investigate immune cell infiltration and function in the tumor microenvironment of RCC. The RECIST criteria were used to define response and progression-free survival (PFS). RESULTS: Galectin-1 expression was elevated in RCC with higher stage (p < 0.001) and grade (p < 0.001). Galectin-1 expression was also elevated in non-responders of IO/TKI therapy (p = 0.047). High galectin-1 was related with shorter PFS in both ZS-MRCC cohort (p = 0.036) and JAVELIN-101 cohort (p = 0.005). Multivariate Cox analysis defined galectin-1 as an independent factor for PFS (HR 2.505; 95% CI 1.116-5.622; p = 0.026). In the tumor microenvironment, high galectin-1 was related with decreased GZMB+CD8+ T cells (Speraman's ρ = -0.31, p = 0.05), and increased PD1 + CD8+ T cells (Speraman's ρ = 0.40, p = 0.01). Besides, elevated number of regulatory T cells (p = 0.039) and fibroblasts (p = 0.011) was also found in high galectin-1 tumors. Finally, a random-forest score (RFscore) was built for predicting IO/TKI benefit. IO/TKI therapy showed benefit only in low-RFscore patients (HR 0.489, 95% CI 0.358-0.669, p < 0.001), rather than high-RFscore patients (HR 0.875, 95% CI 0.658-1.163, p = 0.357). CONCLUSIONS: High galectin-1 indicated therapeutic resistance and shorter PFS of IO/TKI therapy. High galectin-1 also indicated CD8+ T cell dysfunction. High galectin-1 could be applied for patient selection of IO/TKI therapy in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Galectina 1/genética , Galectina 1/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas Tirosina Quinases , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Renais/patologia , Microambiente Tumoral
4.
Mol Cancer ; 23(1): 56, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491381

RESUMO

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Assuntos
Anidrases Carbônicas , Carcinoma de Células Renais , Neoplasias Renais , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Anidrase Carbônica IX/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/patologia , Receptores de Antígenos Quiméricos/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Antígenos de Neoplasias , Anticorpos , Linfócitos T/metabolismo
5.
Mol Biol Rep ; 51(1): 443, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520545

RESUMO

Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.


Assuntos
Carcinoma de Células Renais , Exossomos , Vesículas Extracelulares , Neoplasias Renais , Células-Tronco Mesenquimais , Humanos , Carcinoma de Células Renais/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Renais/metabolismo
6.
Int J Biol Macromol ; 263(Pt 2): 130405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403213

RESUMO

The clear cell renal cell carcinoma (ccRCC) spotlighted the poorest survival, while chromophobe renal cell carcinoma (chRCC) was associated with the best survival. Earlier studies corroborated vitamin D receptor (VDR) was a promising molecular for improving the prognosis of RCC. In contrast to VDRA, the one of VDR isoforms, VDRB1 (VDR isoform B1) has an N-terminal extension of 50 amino acids and is less ligand-dependent. However, the functional differences between VDRA and VDRB1, and their roles in the prognosis of ccRCC and chRCC, have not been investigated. In the present study, we uncovered that the transcripts related to vitamin D pathway and cellular calcium signaling were effectively decreased in the context of ccRCC, yet failed to exert a comparable effect within chRCC. Specially, minimally levels of VDRA wherein kidneys of patients suffering from ccRCC predict shorter survival time. In addition, the protein expressions for ß-catenin/Smad3 pathway and DNA damage and repair pathways were obviously impeded in VDRA-overexpressed ccRCC cells, yet this inhibitory effect was conspicuously absent in enable VDRB1 cells. Our results provide a new idea to improve the prognosis of ccRCC via VDRA upregulation.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , beta Catenina/genética , Rim/metabolismo , Dano ao DNA
7.
Gene ; 905: 148232, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38309317

RESUMO

The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Estabilidade de RNA , RNA Longo não Codificante , Quinases Associadas a rho , Humanos , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Quinases Associadas a rho/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
8.
Cell Cycle ; 23(1): 56-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38389126

RESUMO

AXL plays crucial roles in the tumorigenesis, progression, and drug resistance of neoplasms; however, the mechanisms associated with AXL overexpression in tumors remain largely unknown. In this study, to investigate these molecular mechanisms, wildtype and mutant proteins of arrestin domain-containing protein 3 (ARRDC3) and AXL were expressed, and co-immunoprecipitation analyses were performed. ARRDC3-deficient cells generated using the CRISPR-Cas9 system were treated with different concentrations of the tyrosine kinase inhibitor sunitinib and subjected to cell biological, molecular, and pharmacological experiments. Furthermore, immunohistochemistry was used to analyze the correlation between ARRDC3 and AXL protein expressions in renal cancer tissue specimens. The experimental results demonstrated that ARRDC3 interacts with AXL to promote AXL ubiquitination and degradation, followed by the negative regulation of downstream signaling mechanisms, including the phosphorylation of protein kinase B and extracellular signal-regulated kinase. Notably, ARRDC3 deficiency decreased the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cells in a manner dependent on the regulation of AXL stability. Overall, our results suggest that ARRDC3 is a negative regulator of AXL and can serve as a novel predictor of sunitinib therapeutic response in patients with ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Arrestinas/metabolismo , Arrestinas/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico
9.
Aging (Albany NY) ; 16(4): 3631-3646, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376408

RESUMO

BACKGROUND: To compare clinicopathologic, molecular features, and treatment outcome between fumarate hydratase-deficient renal cell carcinoma (FH-dRCC) and type 2 papillary renal cell carcinoma (T2 pRCC). METHODS: Data of T2 pRCC patients and FH-dRCC patients with additional next-generation sequencing information were retrospectively analyzed. The cancer-specific survival (CSS) and disease-free survival (DFS) were primary endpoint. RESULTS: A combination of FH and 2-succino-cysteine (2-SC) increased the rate of negative predictive value of FH-dRCC. Compared with T2 pRCC cases, FH-dRCC cases displayed a greater prevalence in young patients, a higher frequency of radical nephrectomy. Seven FH-dRCC and two T2 pRCC cases received systemic therapy. The VEGF treatment was prescribed most frequently, with an objective response rate (ORR) of 22.2% and a disease control rate (DCR) of 30%. A combined therapy with VEGF and checkpoint inhibitor reported an ORR of 40% and a DCR of 100%. FH-dRCC cases showed a shortened CSS (P = 0.042) and DFS (P < 0.001). The genomic sequencing revealed 9 novel mutations. CONCLUSIONS: Coupled with genetic detection, immunohistochemical biomarkers (FH and 2-SC) can distinguish the aggressive FH-dRCC from T2 pRCC. Future research is awaited to illuminate the association between the novel mutations and the clinical phenotypes of FH-dRCC in the disease progression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Neoplasias Cutâneas , Neoplasias Uterinas , Humanos , Feminino , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/diagnóstico , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular , Leiomiomatose/diagnóstico , Leiomiomatose/genética , Leiomiomatose/patologia , Resultado do Tratamento , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Neoplasias Cutâneas/genética
10.
EMBO J ; 43(6): 931-955, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360997

RESUMO

The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.


Assuntos
Proteína Beclina-1 , Carcinoma de Células Renais , Neoplasias Renais , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Humanos , Camundongos , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Hidroxilação , Neoplasias Renais/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
11.
Bull Exp Biol Med ; 176(3): 382-385, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38340200

RESUMO

This study analyzed tumor-associated inflammation by assessing the expression of cyclophilin A (CypA) and TNF in samples of kidney tumors of various histological types. It was shown that different histological types of renal cell carcinoma differed by the expression of these proteins. Thus, the highest expression of CypA and TNF was observed in papillary and chromophobe kidney cancer, although no correlation with overall bacterial load was found for these tumors. In the case of clear cell renal cell carcinoma, the expression of proinflammatory factors was observed in only half of the cases and directly correlated with the presence of resident bacteria, serving as a favorable prognostic factor for the disease.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/complicações , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Prognóstico , Neoplasias Renais/patologia
12.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338778

RESUMO

Renal cell carcinoma (RCC) ranks among the most prevalent malignancies in Western countries, marked by its notable heterogeneity, which contributes to an unpredictable clinical trajectory. The insufficiency of dependable biomarkers adds complexity to assessing this tumor progression. Imbalances of several components of the intrarenal renin-angiotensin system (iRAS) significantly impact patient prognoses and responses to first-line immunotherapies. In this study, we analyzed the immunohistochemical expression of the Mas-related G-protein-coupled receptor D (MrgD), which recognizes the novel RAS peptide alamandine (ALA), in a series of 87 clear cell renal cell (CCRCCs), 19 papillary (PRCC), 7 chromophobe (ChRCC) renal cell carcinomas, and 11 renal oncocytomas (RO). MrgD was expressed in all the renal tumor subtypes, with a higher mean staining intensity in the PRCCs, ChRCCs, and ROs. A high expression of MrgD at the tumor center and at the infiltrative front of CCRCC tissues was significantly associated with a high histological grade, large tumor diameter, local invasion, and locoregional node and distant metastasis. Patients with worse 5-year cancer-specific survival and a poorer response to antiangiogenic tyrosine-kinase inhibitors (TKIs) showed higher MrgD expression at the center of their primary tumors. These findings suggest a possible role of MrgD in renal carcinogenetic processes. Further studies are necessary to unveil its potential as a novel biomarker for CCRCC prognosis and response to frontline therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Receptores Acoplados a Proteínas G , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteínas de Transporte , Rim/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
13.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396737

RESUMO

In the realm of cancer therapeutics, targeting the hypoxia-inducible factor (HIF) pathway has emerged as a promising strategy. This study delves into the intricate web of HIF-associated mechanisms, exploring avenues for future anticancer therapies. Framing the investigation within the broader context of cancer progression and hypoxia response, this article aims to decipher the pivotal role played by HIF in regulating genes influencing angiogenesis, cell proliferation, and glucose metabolism. Employing diverse approaches such as HIF inhibitors, anti-angiogenic therapies, and hypoxia-activated prodrugs, the research methodologically intervenes at different nodes of the HIF pathway. Findings showcase the efficacy of agents like EZN-2968, Minnelide, and Acriflavine in modulating HIF-1α protein synthesis and destabilizing HIF-1, providing preliminary proof of HIF-1α mRNA modulation and antitumor activity. However, challenges, including toxicity, necessitate continued exploration and development, as exemplified by ongoing clinical trials. This article concludes by emphasizing the potential of targeted HIF therapies in disrupting cancer-related signaling pathways.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
14.
Mol Cancer ; 23(1): 34, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360682

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS: The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS: CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS: Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Camundongos Nus , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Transdução de Sinais/genética , Neoplasias Renais/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/genética , Peptídeos/genética , Regulação Neoplásica da Expressão Gênica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
15.
Eur J Pharmacol ; 967: 176393, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325792

RESUMO

Sunitinib (SUN) is the first-line targeted therapeutic drug for advanced renal cell carcinoma (RCC). However, SUN resistance is frequently observed to result in tumor metastasis, with a poor survival rate. Therefore, finding an effective and safe adjuvant to reduce drug resistance is important for RCC treatment. Pterostilbene (PTE) and 6-shogaol (6-S) are natural phytochemicals found in edible sources and have potential applications against various cancers. However, the biological mechanisms of PTE and 6-S in SUN-resistant RCC are still unclear. Accordingly, this study investigated the regulatory effects of PTE and 6-S on cell survival, drug resistance, and cell invasion in 786-O and SUN-resistant 786-O (786-O SUNR) cells, respectively. The results demonstrated that PTE and 6-S induced apoptosis in both cell lines by upregulating the Bax/Bcl-2 ratio. Additionally, PTE and 6-S increased SUN sensitivity by inhibiting the expression of the RLIP76 transport protein, reduced cell invasion and downregulated MMP expression in both 786-O and 786-O SUNR cells. Mechanistically, PTE, and 6-S significantly and dose-dependently suppressed the RLIP76-initiated Ras/ERK and Akt/mTOR pathways. In summary, PTE and 6-S induce apoptosis, enhance SUN sensitivity, and inhibit migration in both 786-O and 786-O SUNR cells. These novel findings demonstrate the potential of PTE and 6-S as target therapeutic adjuvants for RCC treatment.


Assuntos
Carcinoma de Células Renais , Catecóis , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Sunitinibe/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Renais/patologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral
16.
Cancer Commun (Lond) ; 44(3): 361-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407929

RESUMO

BACKGROUND: Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS: ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS: We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS: These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.


Assuntos
Proteínas 14-3-3 , Carcinoma de Células Renais , Proteínas de Transporte , Neoplasias Renais , Acetiltransferases N-Terminal , Proteínas de Sinalização YAP , Animais , Camundongos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfangiogênese/genética , Processos Neoplásicos , Proteínas de Transporte/metabolismo , Acetiltransferases N-Terminal/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas de Sinalização YAP/metabolismo
17.
Exp Cell Res ; 437(1): 113977, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373588

RESUMO

Serine metabolic reprogramming is known to be associated with oncogenesis and tumor development. The key metabolic enzyme PSAT1 has been identified as a potential prognostic marker for various cancers, but its role in ccRCC remains unkown. In this study, we investigated expression of PSAT1 in ccRCC using the TCGA database and clinical specimens. Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT1 increased the susceptibility of sunitinib-resistant cells. Inhibition of PSAT1 increased the sensitivity of drug-resistant tumors to sunitinib in vivo. Collectively, our investigation identifies PSAT1 as an independent prognostic biomarker for advanced ccRCC patients and as a prospective therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistência a Medicamentos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Sunitinibe , Regulação para Cima/genética
18.
ACS Nano ; 18(3): 2409-2420, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190455

RESUMO

Serum united urine metabolic analysis comprehensively reveals the disease status for kidney diseases in particular. Thus, the precise and convenient acquisition of metabolic molecular information from united biofluids is vitally important for clinical disease diagnosis and biomarker discovery. Laser desorption/ionization mass spectrometry (LDI-MS) presents various advantages in metabolic analysis; however, there remain challenges in ionization efficiency and MS signal reproducibility. Herein, we constructed a self-assembled hyperbranched black gold nanoarray (HyBrAuNA) assisted LDI-MS platform to profile serum united urine metabolic fingerprints (S-UMFs) for diagnosis of early stage renal cell carcinoma (RCC). The closely packed HyBrAuNA afforded strong electromagnetic field enhancement and high photothermal conversion efficacy, enabling effective ionization of low abundant metabolites for S-UMF collection. With a uniform nanoarray, the platform presented excellent reproducibility to ensure the accuracy of S-UMFs obtained in seconds. When it was combined with automated machine learning analysis of S-UMFs, early stage RCC patients were discriminated from the healthy controls with an area under the curve (AUC) > 0.99. Furthermore, we screened out a panel of 9 metabolites (4 from serum and 5 from urine) and related pathways toward early stage kidney tumor. In view of its high-throughput, fast analytical speed, and low sample consumption, our platform possesses potential in metabolic profiling of united biofluids for disease diagnosis and pathogenic mechanism exploration.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias Renais/patologia , Rim/metabolismo
19.
Cell Death Dis ; 15(1): 64, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233415

RESUMO

Renal cell carcinoma (RCC) is one of the three major malignant tumors of the urinary system and originates from proximal tubular epithelial cells. Clear cell renal cell carcinoma (ccRCC) accounts for approximately 80% of RCC cases and is recognized as a metabolic disease driven by genetic mutations and epigenetic alterations. Through bioinformatic analysis, we found that FK506 binding protein 10 (FKBP10) may play an essential role in hypoxia and glycolysis pathways in ccRCC progression. Functionally, FKBP10 promotes the proliferation and metastasis of ccRCC in vivo and in vitro depending on its peptidyl-prolyl cis-trans isomerase (PPIase) domains. Mechanistically, FKBP10 binds directly to lactate dehydrogenase A (LDHA) through its C-terminal region, the key regulator of glycolysis, and enhances the LDHA-Y10 phosphorylation, which results in a hyperactive Warburg effect and the accumulation of histone lactylation. Moreover, HIFα negatively regulates the expression of FKBP10, and inhibition of FKBP10 enhances the antitumor effect of the HIF2α inhibitor PT2385. Therefore, our study demonstrates that FKBP10 promotes clear cell renal cell carcinoma progression and regulates sensitivity to HIF2α blockade by facilitating LDHA phosphorylation, which may be exploited for anticancer therapy.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Lactato Desidrogenase 5/metabolismo , Fosforilação , Linhagem Celular Tumoral , Carcinoma/genética , Neoplasias Renais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
20.
Mol Cell ; 84(4): 776-790.e5, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211588

RESUMO

TANK-binding kinase 1 (TBK1) is a potential therapeutic target in multiple cancers, including clear cell renal cell carcinoma (ccRCC). However, targeting TBK1 in clinical practice is challenging. One approach to overcome this challenge would be to identify an upstream TBK1 regulator that could be targeted therapeutically in cancer specifically. In this study, we perform a kinome-wide small interfering RNA (siRNA) screen and identify doublecortin-like kinase 2 (DCLK2) as a TBK1 regulator in ccRCC. DCLK2 binds to and directly phosphorylates TBK1 on Ser172. Depletion of DCLK2 inhibits anchorage-independent colony growth and kidney tumorigenesis in orthotopic xenograft models. Conversely, overexpression of DCLK2203, a short isoform that predominates in ccRCC, promotes ccRCC cell growth and tumorigenesis in vivo. Mechanistically, DCLK2203 elicits its oncogenic signaling via TBK1 phosphorylation and activation. Taken together, these results suggest that DCLK2 is a TBK1 activator and potential therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Quinases Semelhantes a Duplacortina , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...